Assembly of jammed colloidal shells onto micron-sized bubbles by ultrasound.

نویسندگان

  • C Buchcic
  • R H Tromp
  • M B J Meinders
  • M A Cohen Stuart
چکیده

Stabilization of gas bubbles in water by applying solid particles is a promising technique to ensure long-term stability of the dispersion against coarsening. However, the production of large quantities of particle stabilized bubbles is challenging. The delivery of particles to the interface must occur rapidly compared to the typical time scale of coarsening during production. Furthermore, the production route must be able to overcome the energy barriers for interfacial adsorption of particles. Here we demonstrate that ultrasound can be applied to agitate a colloidal dispersion and supply sufficient energy to ensure particle adsorption onto the air-water interface. With this technique we are able to produce micron-sized bubbles, solely stabilized by particles. The interface of these bubbles is characterized by a colloidal shell, a monolayer of particles which adopt a hexagonal packing. The particles are anchored to the interface owing to partial wetting and experience lateral compression due to bubble shrinkage. The combination of both effects stops coarsening once the interface is jammed with particles. As a result, stable bubbles are formed. Individual particles can desorb from the interface upon surfactant addition, though. The latter fact confirms that the particle shell is not covalently linked due to thermal sintering, but is solely held together by capillary interaction. In summary, we show that our ultrasound approach allows for the straightforward creation of micron-sized particle stabilized bubbles with high stability towards coarsening.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active structuring of colloidal armour on liquid drops

Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective asse...

متن کامل

Fabrication of planar colloidal clusters with template-assisted interfacial assembly.

The synthesis of nanoparticle clusters, also referred to as colloidal clusters or colloidal molecules, is being studied intensively as a model system for small molecule interactions as well as for the directed self-assembly of advanced materials. This paper describes a technique for the interfacial assembly of planar colloidal clusters using a combination of top-down lithographic surface modifi...

متن کامل

Ultrafast desorption of colloidal particles from fluid interfaces.

The self-assembly of solid particles at fluid-fluid interfaces is widely exploited to stabilize emulsions and foams, and in materials synthesis. The self-assembly mechanism is very robust owing to the large capillary energy associated with particle adsorption, of the order of millions of times the thermal energy for micrometer-sized colloids. The microstructure of the interfacial colloid monola...

متن کامل

On-chip preparation of nanoscale contrast agents towards high-resolution ultrasound imaging.

Micron-sized lipid-stabilised bubbles of heavy gas have been utilised as contrast agents for diagnostic ultrasound (US) imaging for many years. Typically bubbles between 1 and 8 μm in diameter are produced to enhance imaging in US by scattering sound waves more efficiently than surrounding tissue. A potential area of interest for Contrast Enhanced Ultrasound (CEUS) are bubbles with diameters <1...

متن کامل

Elastic properties of hollow colloidal particles.

The elastic properties of micrometer-sized hollow colloidal particles obtained by emulsion templating are probed by nanoindentation measurements in which point forces are applied to solvent-filled particles supported on a flat substrate. We show that the shells respond linearly up to forces of 7-21 nN, where the indentation becomes of the order of the shell thickness (20-40 nm). In the linear r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft matter

دوره 11 7  شماره 

صفحات  -

تاریخ انتشار 2015